Гигабит. Гигабит в секунду Отрывок, характеризующий Гигабит

Если на рынке коммутаторов Ethernet и происходит что-то интересное, то это касается преимущественно (или исключительно) решений для центров обработки данных. Переход на более высокие скорости, изменения в архитектуре сети, программируемые сети и коммутаторы без ОС - все эти технологические и технические новшества оказываются востребованы прежде всего в ЦОДе, а до офисных сетей порой и вовсе не добираются. Тем не менее с появлением беспроводных точек доступа 802.11ac возникла необходимость в поддержке скоростей свыше 1 Гбит/с в обычных офисных сетях, а с ней - и потребность в новых, специфичных только для этой ниши скоростях 2,5 и 5 Гбит/с.

10G В ОФИСЕ: И ДАРОМ НЕ НАДО?

Если в облачных центрах обработки данных наряду с 10 Gibabit Ethernet главным драйвером роста спроса на коммутаторы становится потребность в поддержке 40 Gigabit Ethernet, то в корпоративных сетях по-прежнему основное количество подключений приходится на гигабитные соединения (см. рис. 1). Что говорить об обычных офисах, если даже в корпоративных ЦОДах, по данным Broadcom, доля гигабитных портов в серверах и коммутаторах в стойках (ToR) составляет 60%, несмотря на то что оборудование 10GbE доступно на рынке уже 10 лет. В чем же причина?

Если исходить из соотношения цена/производительность, то оборудование 10 Gigabit Ethernet окажется дешевле - условный 1 Гбит/с пропускной способности обойдется в меньшую сумму. Однако если уж в серверах большинство портов гигабитные, то для рабочих станций, а тем более для ПК, столь высокие скорости, как 10 Гбит/с, попросту не нужны. Для многих конечных точек вполне достаточно 100 Мбит/с, и тем не менее они оснащаются платами на 1 Гбит/с. В немалой степени массовому переходу на Gigabit Ethernet способствовал тот факт, что для поддержки таких скоростей не надо было менять уже проложенную проводку - а это не только весьма значительная статья расходов, но и определенные неудобства.

Коммутаторы с портами 10GBase-T для сегмента малых и средних предприятий имеются у целого ряда производителей. Так, например, Netgear предлагает соответствующее оборудование еще с 2013 года, но позиционирует его в первую очередь для подключения серверов и сетевых систем хранения (NAS), а не рабочих станций и персональных компьютеров. «В нашей продуктовой линейке уже сейчас много продуктов с поддержкой скорости передачи данных выше 1 Гбит/с, - отмечает Яков Юницкий, директор по операциям в компании «Тайле». - Их основное предназначение - создание решений для магистральных каналов Ethernet, подключения систем хранения данных и высокопроизводительных серверов».

Между тем именно поддержка той или иной технологии в конечных устройствах способна обеспечить массовость рынка. Однако пока таких задач, где оказались бы востребованы скорости 10 Гбит/с на уровне пользователя, не просматривается. «Предпосылками к массовому переходу офисных сетей на такие скорости должны прежде всего стать приложения с высокими требованиями к пропускной способности, - продолжает Яков Юницкий. - Несмотря на то что многие компании давно перешли на IP-телефонию, используют оборудование для видеоконференций и IP-видеонаблюдения, до потолка производительности сетей 1 Гбит/с, а местами и 100 Mбит/c, еще далеко».

Как показал наш небольшой опрос, проведенный среди производителей и поставщиков оборудования, в сегменте SMB массового спроса на решения 10GbE не наблюдается и, более того, не ожидается. «Маловероятно, что в ближайшие пару лет произойдет повсеместный перевод офисных сетей на скорости доступа выше 1 Гбит/с», - полагает Андрей Ковязин, начальник отдела сетевых решений в «Компании КОМПЛИТ». Однако наличие подобного оборудования в линейке таких производителей, как D-Link (см. рис. 2), Netgear, ZyXEL и др., свидетельствует о том, что спрос на него есть - во всяком случае потенциальная ниша достаточно широ-ка, чтобы привлечь внимание этих вендоров.

«Мы ожидаем, что в 2015–2016 годах рост продаж сетевого оборудования с оптическими и медными портами 10G офисному сегменту и предприятиям малого и среднего бизнеса будет многократным, в том числе за счет появления в продуктовой линейке новых бюджетных серий», - отмечает Денис Давыдов, руководитель отдела проектов D-Link. В компании уверены, что дальнейшее увеличение объемов информации приведет к проникновению технологий 10G в сети любых размеров, в том числе принадлежащие предприятиям SMB, где активно внедряются решения и системы хранения данных и виртуализации, а также облачные технологии.

Согласно оценке Broadcom, в ближайшие три года можно ожидать широкого внедрения серверов и коммутаторов с поддержкой 10GbE в корпоративных сетях, и в результате к 2018 году доля соответствующего оборудования увеличится с нынешних 35 до 63% (см. рис. 3).

10G МНОГО, 1G МАЛО

Дорогостоящие проводка, соединители и микросхемы ограничивают применение 10GbE приложениями с высокими требованиями к ресурсам - такими, например, как мощные виртуализированные серверы с множеством ВМ. Однако в офисных сетях есть задачи, где скорости 1 Гбит/с оказывается уже недостаточно, а 10 Гбит/с пока слишком много. Это подключение к проводной сети беспроводных точек доступа стандарта 802.11ас Wave 2.

Если собственные серверы виртуализации нужны далеко не каждому малому предприятию, к тому же соответствующие ресурсы можно взять из облака, то отсутствие беспроводного доступа для клиентов способно негативно повлиять на конкурентоспособность предприятия из сферы обслуживания, да и точка доступа должна физически находиться в офисе. Как показал опрос Bredin представителей малого бизнеса (число сотрудников от 1 до 10 человек), посетители предпочитают бесплатный Wi-Fi чаю и кофе с конфетами. В отчете отмечается, что если Wi-Fi плохого качества или отсутствует, то восприятие клиентом компании становится отрицательным. Для удовлетворения таких потребностей обычно вполне достаточно точки доступа 802.11n или даже более ранних стандартов, однако более крупным предприятиям и помещениям, где посетителей всегда много, возможностей 802.11n не всегда хватает. Кроме того, для поддержки следующего беспроводного стандарта IEEE 802.3ad в диапазоне 60 ГГц потребуется подключение со скоростью 5 Гбит/с (для TCP).

Появившиеся на рынке ТД 802.11ac Wave 2 пока поддерживают не более четырех пространственных потоков, поэтому для их подключения вполне достаточно двух линий по 1 Гбит/с. Так, например, точка доступа ZoneFlex R710 Wave 2 AP разработки Ruckus Wireless оснащена двумя гигабитными портами, то есть с переходом на более скоростные подключения можно повременить. Однако с появлением ТД, способных поддерживать восемь пространственных потоков, 2х1 Гбит/с может оказаться недостаточно. Для таких ТД потребуется либо подводить дополнительные кабели, либо переходить на 10GbE и, соответственно, на проводку Категории 6А. Чтобы этого избежать, IEEE спешно разрабатывает стандарты Ethernet на 2,5 и 5 Гбит/с. «Их преимущество проявляется в работе по широко распространенным существующим СКС Категорий 5e и 6 на скорости до 5 Гбит/с, что избавляет от необходимости полностью переделывать кабельную систему для беспроводного доступа нового поколения» - отмечает Андрей Ковязин.

Разработкой соответствующих технологий и оборудования занимаются два альянса: NBase-T и MGBase-T (см. подробнее статью автора «Замедление Ethernet» в февральском номере «Журнала сетевых решений/LAN» за 2015 год). Потенциально наличие двух конкурирующих сторон могло затормозить принятие стандарта, как это случилось с 802.11n, на одобрение которого ушло семь лет. Однако, к счастью, на последнем заседании рабочей группы IEEE, собиравшейся в мае текущего года, удалось достигнуть общего согласия по базовой технологии для Ethernet на 2,5 и 5 Гбит/с. Как отметил Дэвид Чалупски, председатель рабочей группы IEEE P802.3bz, «достижение консенсуса позволило немедленно перейти к следующей фазе проекта - составлению чернового варианта спецификации».

Таким образом, было сэкономлено несколько месяцев. Однако работа над стандартом далека от завершения - его подготовка займет еще полтора-два года. К тому времени должно получить широкое распространение беспроводное оборудование 802.11ac Wave 2. Как предполагается, скорость 2,5 Гбит/с будет поддерживаться кабельной проводкой Категории 5е, а 5 Гбит/с - Категории 6. Между тем на рынке уже появляются коммутаторы с поддержкой мультигигабитных скоростей. В первом полугодии этого года соответствующие модули для своих коммутаторов выпустили HP и Cisco. Впрочем, та же Cisco свои точки доступа пока предпочитает оснащать не мультигигабитными портами, а двумя обычными Gigabit Ethernet (см. рис. 4).

Как надеются аналитики, появление новых скоростей Ethernet послужит толчком к модернизации офисных сетей. «Для кампусных коммутаторов настало время модернизации, - считают в Dell’Oro. - Доступность точек доступа 802.11ac Wave 2 корпоративного класса порождает спрос на коммутаторы нового типа». Многогигабитные коммутаторы стоят дороже, чем традиционные с портами 1 Гбит/с, однако они позволяют использовать уже проложенную проводку, что является существенным аргументом в их пользу. «Первые поставки портов 2.5/5.0 GbE стартовали в начале июня, - сообщает Крис Де Пьюи, вице-президент Dell’Oro Group по выпуску оборудования для корпоративного сегмента. - В третьем квартале, с появлением новых предложений, мы ожидаем значительного роста продаж. Уже сейчас можно говорить о формировании совершенно нового сегмента рынка Ethernet». По прогнозам Dell’Oro, уже за первый год будет продано свыше миллиона мультигигабитных портов.

КАКАЯ ПРОВОДКА НУЖНА?

Какой должна быть кабельная инфраструктура для поддержки беспроводного доступа? Требования к такой проводке изложены в TIA TSB-162, где рекомендуется инсталляция кабельной системы Категории 6А или многомодовой оптики с волокнами OM3 (см. подробнее статью Степана Большакова и Романа Китаева «Инфраструктурное обеспечение беспроводных решений нового поколения» в апрельском номере «Журнала сетевых решений/LAN» за 2015 год). Однако эти рекомендации составлялись, когда 2,5- и 5-гигабитного Ethernet не было даже в проекте. Впрочем, для новых инсталляций они остаются справедливы и сейчас, позволяя не беспокоиться о необходимости модернизации долгие годы: те, кто 20 лет назад не поскупился на установку только что появившихся систем Категории 5е, могут по-прежнему пользоваться своей проводкой, если только не исчерпался ее физический ресурс. До морального же устаревания пока далеко, к тому же теперь такая проводка способна поддерживать не только гигабитные, но и 2,5-гигабитные скорости.

Ожидаемое появление стандарта на 2,5 и 5 Гбит/с дало долгожданное приложение для кабельных систем Категории 6: если раньше, по сути, единственным аргументом в пользу ее установки был запас по характеристикам, то теперь он наконец-то пригодился - таким приложением может стать 5GBase-T. «О возросших требованиях рынка к поддерживаемым скоростям и пропускной способности мы, как поставщик кабельных решений, можем судить на основании увеличенного спроса на компоненты и системы СКС различных категорий, - говорит Дарюш Заенц, директор представительства RiT Technologies в России. - Объемы продаж компонентов Категории 6 значительно увеличились по сравнению с продажами компонентов Категории 5е».

Ответить на вопрос о выборе проводки достаточно непросто. Усилия IEEE направлены на то, чтобы подключение высокоскоростных точек доступа осуществлялось на базе уже проложенной проводки. Однако до сих пор неясно, будет ли обеспечена поддержка 5 Гбит/с по Категории 5е (а на нее все еще приходится большинство инсталлированных кабельных систем - см. рис. 5). Судя по последней информации из IEEE, рабочая группа все же решила ограничиться 2,5 Гбит/с. Вместе с тем Cisco, например, заявляет о поддержке 5 Гбит/с по проводке Категории 5е на расстоянии до 100 м.

Скорости 2,5 Гбит/с в принципе достаточно для подключения уже появившихся на рынке продуктов 802.11ac Wave 2 с поддержкой до четырех пространственных потоков. Если же заказчик хочет в перспективе использовать точки доступа с поддержкой восьми пространственных потоков, то ему придется либо переходить на Категорию 6 (если у него установлена Категория 5е), либо надеяться на нестандартное оборудование (в случае отсутствия спецификаций на 5Base-T для Категории 5е). (Строго говоря, не исключается и третий вариант - объединение двух соединений по 2,5 Гбит/с, при условии поддержки этой возможности оборудованием.)

Пропускной способности 5 Гбит/с, то есть Категории 6 в худшем случае, будет вполне достаточно для любого оборудования 802.11ac. Теоретическая максимальная пропускная способность для этого стандарта составляет 6,9 Гбит/с, но речь идет о скорости передачи битов на физическом уровне. Пропускная же способность на MAC-уровне существенно меньше - 4,49 Гбит/с (см. таблицу). Эффективность проводного Ethernet намного лучше, чем беспроводного, - например, для 10GbE при передаче кадров размером 1518 она составляет приблизительно 94% (для пользовательских данных). Иначе говоря, беспроводной поток 6,9 Гбит/с поместится в проводной канал 5 Гбит/с.

передачи информации , используемая на физическом уровне сетевой модели OSI или TCP/IP .

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

В телекоммуникациях

В телекоммуникациях приняты десятичные приставки, например, 1 килобит = 1000 бит. Аналогично 1 килобайт = 1000 байт, хотя в телекоммуникациях не принято измерять скорость в байт/с.

На фундаментальном уровне скорость передачи информации (не путать со скоростью чтения и записи информации) зависит от частоты генератора передатчика (измеряемой в Гц) и от применяемого кода. Ни то, ни другое не связано ограничениями двоичной логики. При разработке стандартов скорости (и частоты) чаще всего подбирают так, чтобы передавалось целое число байт.

  • Максимальная скорость передачи информации во всех Ethernet стандартах: 10 Мбит/с = 10000000 бит/с; 100 Мбит/с = 100000000 бит/с; 1 Гбит/с = 1000000000 бит/с и т. д. При этом бодовая отличается в разных стандартах и зависит от способа кодирования.
  • Основной цифровой канал (ОЦК) имеет скорость 64 кбит/с = 64*1000 бит/с. На основе ОЦК построена вся плезиохронная цифровая иерархия . Например, скорость потока E1 (содержит 32 ОЦК) = 2,048 Мбит/с = 2048 кбит/с = 2048000 бит/с.
  • Скорость STM-1 равна 155,52 Мбит/с = 155520000 бит/с. На основе STM-1 построена вся синхронная цифровая иерархия .
  • Скорости старых модемов, написанные в спецификациях (и на коробках самих модемов), 56К, 33.6К, 28.8K, 14.4К и т. д. указаны с коэффициентом 1 K = 1000 бит.

В архитектуре компьютерных систем

В современном мире повсеместно используются компьютеры на двоичной логике, которая имеет свои ограничения. Существует минимально передаваемый (адресуемый) блок информации. В большинстве случаев это 1 байт. Компьютеры могут хранить (и адресовать) только объём информации, кратный 1 байту (см. Машинное слово). Объём данных принято измерять в байтах. Поэтому используется 1 КБ = 1024 байт. Это вызвано оптимизацией вычислений (в памяти и процессоре). От размера страниц памяти зависит всё остальное - размер блока I/O у файловых систем обычно кратен размеру страницы памяти, размер сектора на диске подбирается так, чтобы кратно укладываться в размер блока файловых систем.

Многие производители накопителей (за исключением компакт-дисков) указывают размер из расчёта 1 КБ = 1000 байт. Существует мнение, что это вызвано маркетинговыми причинами.

Стандарты

  • Международной электротехнической комиссией в марте 1999 года во второй поправке к IEC 60027-2 были введены в действие двоичные приставки «киби » (сокращенно Ки- , Ki- ), «меби » (сокращенно Ми- , Mi- ) и т. п. Однако не все придерживаются данных терминов.
  • ГОСТ 8.417-2002 , 1 сентября 2003 г. - «Единицы величин»
  • JEDEC 100B.01 en - стандарт для маркировки цифровой памяти по которому кило = 1024.
  • RFC 2330 , май 1998 - «Framework for IP Performance Metrics». Документ не является стандартом Интернета, но может быть использован в качестве справочного материала.

Практика

  • В оборудовании Cisco при выставлении скорости считается, что 1 кбит/с = 1000 бит/с.
  • С версии MAC OS X 10.6 Snow Leopard показывает в СИ-единицах.
  • В Windows для отображения хранимой информации используется 1 КБ = 1024 байт. [как трактуется скорость в «мониторе ресурсов»? ]
  • Многие сборки Linux, руководствуясь стандартами, используют 1 кбит = 1000 бит, 1 кибит = 1024 бит.
  • Возможно jфные скорости. Например, один провайдер может считать, что 1Мб = 1024 Кб, другой, что 1 Мб = 1000 Кб (несмотря на то, что в обоих случаях 1 Кб = 1000 бит) [ ] . Такое несоответствие не всегда является недоразумением, например, если на сети провайдера используются потоки , скорости всегда будут кратны 64. Некоторые люди и организации избегают неоднозначности, употребляя выражения «тысяча бит» вместо «килобит» и т. п.

Пример соответствия единиц при том и другом подходе приведены в таблице.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мебибайт в секунду [МиБ/с] = 0,00781250000000002 гибибит в секунду [Гибит/с]

Исходная величина

Преобразованная величина

бит в секунду байт в секунду килобит в секунду (метрический) килобайт в секунду (метрический) кибибит в секунду кибибайт в секунду мегабит в секунду (метрический) мегабайт в секунду (метрический) мебибит в секунду мебибайт в секунду гигабит в секунду (метрический) гигабайт в секунду (метрический) гибибит в секунду гибибайт в секунду терабит в секунду (метрический) терабайт в секунду (метрический) тебибит в секунду тебибайт в секунду Ethernet 10BASE-T Ethernet 100BASE-TX (быстрый) Ethernet 1000BASE-T (гигабит) Оптическая несущая 1 Оптическая несущая 3 Оптическая несущая 12 Оптическая несущая 24 Оптическая несущая 48 Оптическая несущая 192 Оптическая несущая 768 ISDN (одиночный канал) ISDN (двойной канал) модем (110) модем (300) модем (1200) модем (2400) модем (9600) модем (14.4k) модем (28.8k) модем (33.6k) модем (56k) SCSI (асинхронный режим) SCSI (синхронный режим) SCSI (Fast) SCSI (Fast Ultra) SCSI (Fast Wide) SCSI (Fast Ultra Wide) SCSI (Ultra-2) SCSI (Ultra-3) SCSI (LVD Ultra80) SCSI (LVD Ultra160) IDE (PIO mode 0) ATA-1 (PIO mode 1) ATA-1 (PIO mode 2) ATA-2 (PIO mode 3) ATA-2 (PIO mode 4) ATA/ATAPI-4 (DMA mode 0) ATA/ATAPI-4 (DMA mode 1) ATA/ATAPI-4 (DMA mode 2) ATA/ATAPI-4 (UDMA mode 0) ATA/ATAPI-4 (UDMA mode 1) ATA/ATAPI-4 (UDMA mode 2) ATA/ATAPI-5 (UDMA mode 3) ATA/ATAPI-5 (UDMA mode 4) ATA/ATAPI-4 (UDMA-33) ATA/ATAPI-5 (UDMA-66) USB 1.X FireWire 400 (IEEE 1394-1995) T0 (полный сигнал) T0 (B8ZS полный сигнал) T1 (полезный сигнал) T1 (полный сигнал) T1Z (полный сигнал) T1C (полезный сигнал) T1C (полный сигнал) T2 (полезный сигнал) T3 (полезный сигнал) T3 (полный сигнал) T3Z (полный сигнал) T4 (полезный сигнал) Virtual Tributary 1 (полезный сигнал) Virtual Tributary 1 (полный сигнал) Virtual Tributary 2 (полезный сигнал) Virtual Tributary 2 (полный сигнал) Virtual Tributary 6 (полезный сигнал) Virtual Tributary 6 (полный сигнал) STS1 (полезный сигнал) STS1 (полный сигнал) STS3 (полезный сигнал) STS3 (полный сигнал) STS3c (полезный сигнал) STS3c (полный сигнал) STS12 (полезный сигнал) STS24 (полезный сигнал) STS48 (полезный сигнал) STS192 (полезный сигнал) STM-1 (полезный сигнал) STM-4 (полезный сигнал) STM-16 (полезный сигнал) STM-64 (полезный сигнал) USB 2.X USB 3.0 USB 3.1 FireWire 800 (IEEE 1394b-2002) FireWire S1600 and S3200 (IEEE 1394-2008)

Подробнее о передаче данных

Общие сведения

Данные могут быть как в цифровом, так и в аналоговом формате. Передача данных также может происходить в одном из этих двух форматов. Если и данные, и способ их передачи - аналоговые, то и передача данных - аналоговая. Если либо данные, либо способ передачи - цифровые, то и передача данных называется цифровой. В этой статье мы поговорим именно о цифровой передаче данных. Сейчас все чаще используют цифровую передачу данных и хранят их в цифровом формате, так как это позволяет ускорить процесс передачи и увеличить безопасность обмена информацией. Если не считать вес устройств, необходимых для пересылки и обработки данных, то сами цифровые данные - невесомы. Замена аналоговых данных цифровыми помогает облегчить процесс обмена информацией. Данные в цифровом формате удобнее брать с собой в дорогу, так как по сравнению с данными в аналоговом формате, например на бумаге, цифровые данные не занимают место в багаже, если не считать носителя. Цифровые данные позволяют пользователям с доступом к Интернету работать в виртуальном пространстве из любого уголка мира, где есть Интернет. С цифровыми данными могут работать несколько пользователей одновременно, получив доступ к компьютеру, на котором они хранятся, и используя программы удаленного администрирования, описанные ниже. Различные интернет-приложения, например Google Docs, Wikipedia, форумы, блоги, и другие, также позволяют пользователям совместно работать над одним документом. Именно поэтому передача данных в цифровом формате так широко используется. В последнее время становятся популярными экологически чистые и «зеленые» офисы, где стараются перейти на безбумажную технологию, чтобы уменьшить углеродный след компании. Это сделало цифровой формат еще более популярным. Утверждение о том, что избавившись от бумаги, мы намного сократим энергетические затраты, не совсем правильно. Во многих случаях это мнение навеяно рекламными компаниями тех, кому выгодно, чтобы больше людей перешло на безбумажные технологии, например, производителям компьютеров, и программного обеспечения. Это также выгодно тем, кто предоставляет услуги в этой области, например облачные вычисления. На самом деле эти затраты почти равны, так как для работы компьютеров, серверов, и поддержки сети необходимо большое количество энергии, которую часто добывают из невосполнимых источников, например сжигая ископаемое топливо. Многие надеются, что в будущем безбумажные технологии действительно будут более экономичны. В повседневной жизни люди тоже стали чаще работать с цифровыми данными, например, предпочитая электронные книги и планшеты бумажным. Большие компании часто объявляют в пресс-релизах, что переходят на безбумажную работу, чтобы показать, что они заботятся об окружающей среде. Как описано выше, иногда это пока только рекламный ход, но несмотря на это все больше и больше компаний уделяют внимание цифровой информации.

Во многих случаях отправка и получение данных в цифровом формате автоматизирована, и для такого обмена данных от пользователей требуется самый минимум. Иногда им всего лишь нужно нажать кнопку в программе, в которой они создали данные - например, при отправлении электронной почты. Это очень удобно для пользователей, так как большая часть работы по передаче данных происходит «за кадром», в центрах передачи и обработки данных. Эта работа включает в себя не только непосредственную обработку данных, но и создание инфраструктур для их быстрой передачи. Например, для того, чтобы обеспечить быструю связь по Интернету, по дну океана проложена обширная система кабелей. Количество этих кабелей постепенно увеличивается. Такие глубоководные кабели по нескольку раз пересекают дно каждого океана и проложены по морям и проливам для того, чтобы соединить между собой страны с доступом к морю. Прокладка и поддержка этих кабелей в рабочем состоянии - лишь один из примеров работы «за кадром». Кроме этого, такая работа включает обеспечение и поддержку связи в дата-центрах и у интернет-провайдеров, поддержание серверов компаниями, предлагающими хостинг, и обеспечение бесперебойной работы веб-сайтов администраторами, особенно теми, что предоставляют пользователям возможность передавать данные в большом объеме, например пересылку почты, скачивание файлов, публикации материалов, и другие услуги.

Для передачи данных в цифровом формате необходимы следующие условия: данные должны быть правильно кодированы, то есть, в правильном формате; необходим канал связи, передатчик и приемник, и, наконец, протоколы для передачи данных.

Кодирование и дискретизация

Имеющиеся данные кодируют так, чтобы принимающая сторона могла их прочесть и обработать. Кодирование или преобразование данных из аналогового формата в цифровой называется дискретизацией. Чаще всего данные кодируют в двоичной системе, то есть информация представлена как ряд чередующихся единиц и нулей. После того, как данные закодированы в двоичной системе, их передают в виде электромагнитных сигналов.

Если данные в аналоговом формате необходимо передать по цифровому каналу, их дискретизируют. Так, например, аналоговые телефонные сигналы с телефонной линии кодируют в цифровые, чтобы передать их по Интернету получателю. В процессе дискретизации используют теорему Котельникова , которая в английском варианте называется теоремой Найквиста-Шеннона, или просто теоремой о дискретизации. Согласно этой теореме, сигнал можно преобразовать из аналогового в цифровой без потери качества в случае, если его максимальная частота не превышает половины частоты отсчётов. Здесь частота отсчётов - это частота, с которой «берут пробу» аналогового сигнала, то есть определяют его характеристики в момент отсчета.

Кодирование сигнала может быть как с защищенным, так и с открытым доступом. Если сигнал защищен, и его перехватят лица, которым он не предназначался, то они не смогут его декодировать. В этом случае используют криптостойкое шифрование.

Канал связи, передатчик и приемник

Канал связи предоставляет среду для передачи информации, а передатчики и приемники - непосредственно участвуют в передаче и получении сигнала. Передатчик состоит из устройства, кодирующего информацию, например модема, и устройства, передающего данные в виде электромагнитных волн. Это может быть, например, и простейшее устройство в форме лампы накаливания, передающей сообщения с помощью азбуке Морзе, и лазер, и светодиод. Чтобы распознавать эти сигналы, необходимо приемное устройство. Примеры приемных устройств - фотодиоды, фоторезисторы и фотоумножители, которые распознают световые сигналы, или радиоприемники, принимающие радиоволны. Некоторые такие устройства работают только с аналоговыми данными.

Протоколы передачи данных

Протоколы передачи данных похожи на язык, так как они осуществляют общение между устройствами во время передачи данных. Они также распознают ошибки, возникающие во время этой передачи, и помогают их устранить. Пример широко используемого протокола - протокол управления передачей, или TCP (от английского Transmission Control Protocol).

Применение

Цифровая передача важна потому, что без нее невозможно было бы использовать компьютеры. Ниже приведены несколько интересных примеров использования цифровой передачи данных.

IP-телефония

IP-телефония, также известная как телефония voice over IP (VoIP), в последнее время набирает популярность как альтернативный вид общения по телефону. Сигнал передают по цифровому каналу, используя Интернет вместо телефонной линии, что позволяет передавать не только звук, но и другие данные, например видео. Примерами самых больших провайдеров таких услуг являются Skype (Скайп) и Google Talk. В последнее время большой популярностью пользуется программа LINE созданная в Японии. Большинство провайдеров предоставляют услуги по аудио- и видеозвонкам между компьютерами и смартфонами, подключенными к Интернету, бесплатно. Дополнительные услуги, например звонки с компьютера на телефон, предоставляют за дополнительную плату.

Работа с тонким клиентом

Цифровая передача данных помогает компаниям не только упростить хранение и обработку данных, но также работу с компьютерами внутри организации. Иногда компании используют часть компьютеров для простых вычислений или операций, например для доступа в Интернет, и использование обычных компьютеров в этой ситуации не всегда целесообразно, так как компьютерная память, мощность, и другие параметры, не используются в полной мере. Одно из решений в такой ситуации - подключить такие компьютеры к серверу, который хранит данные и запускает программы, необходимые этим компьютерам для работы. В этом случае компьютеры с упрощенной функциональностью называются тонкими клиентами. Их можно использовать только для простых задач, например для доступа к библиотечному каталогу или для использования простых программ, таких как программы для кассового аппарата, которые записывают в базу данных информацию о продаже, а также выбивают чеки. Обычно пользователь тонкого клиента работает с монитором и клавиатурой. Информация не обрабатывается на тонком клиенте, а посылается на сервер. Удобство тонкого клиента в том, что он дает пользователю удаленный доступ к серверу через монитор и клавиатуру, и для него не нужен мощный микропроцессор, жесткий диск, и другие аппаратные средства.

В некоторых случаях используют специальное оборудование, но часто достаточно планшетного компьютера или монитора и клавиатуры от обычного компьютера. Единственная информация, которую обрабатывает сам тонкий клиент - это интерфейс работы с системой; все остальные данные обрабатывает сервер. Интересно заметить, что иногда обычные компьютеры, на которых, в отличие от тонкого клиента, обрабатывают данные, называют толстыми клиентами.

Использование тонких клиентов не только удобно, но и выгодно. Установить новый тонкий клиент не требует больших затрат, так как для него не нужно дорогостоящих программных и аппаратных средств, таких как память, жесткий диск, процессор, программное обеспечение, и других. К тому же, жесткие диски и процессоры перестают работать в слишком пыльных, жарких или холодных помещениях, а также при повышенной влажности и в других неблагоприятных условиях. При работе с тонкими клиентами, благоприятные условия нужны только в комнате с серверами, так как в тонких клиентах нет процессоров и жестких дисков, а мониторы и устройства ввода данных нормально работают и в более тяжелых условиях.

Недостаток тонких клиентов в том, что они плохо работают, если необходимо часто обновлять графический интерфейс, например для видео и игр. Проблематично также и то, что если сервер перестанет работать, то все подключенные к нему тонкие клиенты тоже не будут работать. Несмотря на эти недостатки, компании все чаще и чаще используют тонкие клиенты.

Удаленное администрирование

Удаленное администрирование похоже на работу с тонким клиентом в том, что компьютер, имеющий доступ к серверу (клиент), может хранить и обрабатывать данные, а также использовать программы на сервере. Разница заключается в том, что клиент в этом случае обычно «толстый». К тому же, тонкие клиенты чаще всего подключены к локальной сети, в то время как удаленное администрирование происходит через Интернет. У удаленного администрирования есть множество применений, например, оно позволяет людям удаленно работать с сервером компании, или со своим домашним сервером. Компании, которые выполняют часть работы в удаленных офисах или сотрудничают со сторонними исполнителями, могут предоставлять доступ к информации таким офисам через удаленное администрирование. Это удобно если, например, работа по поддержке клиентов проходит в одном из таких офисов, но всем кадрам компании необходим доступ к базе данных клиентов. Удаленное администрирование обычно безопасно и людям со стороны не так легко получить доступ к серверам, хотя иногда существует риск несанкционированного доступа.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

передачи информации , используемая на физическом уровне сетевой модели OSI или TCP/IP .

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

В телекоммуникациях

В телекоммуникациях приняты десятичные приставки, например, 1 килобит = 1000 бит. Аналогично 1 килобайт = 1000 байт, хотя в телекоммуникациях не принято измерять скорость в байт/с.

На фундаментальном уровне скорость передачи информации (не путать со скоростью чтения и записи информации) зависит от частоты генератора передатчика (измеряемой в Гц) и от применяемого кода. Ни то, ни другое не связано ограничениями двоичной логики. При разработке стандартов скорости (и частоты) чаще всего подбирают так, чтобы передавалось целое число байт.

  • Максимальная скорость передачи информации во всех Ethernet стандартах: 10 Мбит/с = 10000000 бит/с; 100 Мбит/с = 100000000 бит/с; 1 Гбит/с = 1000000000 бит/с и т. д. При этом бодовая отличается в разных стандартах и зависит от способа кодирования.
  • Основной цифровой канал (ОЦК) имеет скорость 64 кбит/с = 64*1000 бит/с. На основе ОЦК построена вся плезиохронная цифровая иерархия . Например, скорость потока E1 (содержит 32 ОЦК) = 2,048 Мбит/с = 2048 кбит/с = 2048000 бит/с.
  • Скорость STM-1 равна 155,52 Мбит/с = 155520000 бит/с. На основе STM-1 построена вся синхронная цифровая иерархия .
  • Скорости старых модемов, написанные в спецификациях (и на коробках самих модемов), 56К, 33.6К, 28.8K, 14.4К и т. д. указаны с коэффициентом 1 K = 1000 бит.

В архитектуре компьютерных систем

В современном мире повсеместно используются компьютеры на двоичной логике, которая имеет свои ограничения. Существует минимально передаваемый (адресуемый) блок информации. В большинстве случаев это 1 байт. Компьютеры могут хранить (и адресовать) только объём информации, кратный 1 байту (см. Машинное слово). Объём данных принято измерять в байтах. Поэтому используется 1 КБ = 1024 байт. Это вызвано оптимизацией вычислений (в памяти и процессоре). От размера страниц памяти зависит всё остальное - размер блока I/O у файловых систем обычно кратен размеру страницы памяти, размер сектора на диске подбирается так, чтобы кратно укладываться в размер блока файловых систем.

Многие производители накопителей (за исключением компакт-дисков) указывают размер из расчёта 1 КБ = 1000 байт. Существует мнение, что это вызвано маркетинговыми причинами.

Стандарты

  • Международной электротехнической комиссией в марте 1999 года во второй поправке к IEC 60027-2 были введены в действие двоичные приставки «киби » (сокращенно Ки- , Ki- ), «меби » (сокращенно Ми- , Mi- ) и т. п. Однако не все придерживаются данных терминов.
  • ГОСТ 8.417-2002 , 1 сентября 2003 г. - «Единицы величин»
  • JEDEC 100B.01 en - стандарт для маркировки цифровой памяти по которому кило = 1024.
  • RFC 2330 , май 1998 - «Framework for IP Performance Metrics». Документ не является стандартом Интернета, но может быть использован в качестве справочного материала.

Практика

  • В оборудовании Cisco при выставлении скорости считается, что 1 кбит/с = 1000 бит/с.
  • С версии MAC OS X 10.6 Snow Leopard показывает в СИ-единицах.
  • В Windows для отображения хранимой информации используется 1 КБ = 1024 байт. [как трактуется скорость в «мониторе ресурсов»? ]
  • Многие сборки Linux, руководствуясь стандартами, используют 1 кбит = 1000 бит, 1 кибит = 1024 бит.
  • Возможно jфные скорости. Например, один провайдер может считать, что 1Мб = 1024 Кб, другой, что 1 Мб = 1000 Кб (несмотря на то, что в обоих случаях 1 Кб = 1000 бит) [ ] . Такое несоответствие не всегда является недоразумением, например, если на сети провайдера используются потоки , скорости всегда будут кратны 64. Некоторые люди и организации избегают неоднозначности, употребляя выражения «тысяча бит» вместо «килобит» и т. п.

Пример соответствия единиц при том и другом подходе приведены в таблице.

Похожие статьи

© 2024 tricolor-ofis-prodazh.ru. Нужные устройства.